姓 名:张春阳
性 别:男
学 位:博士
职 称:副教授
联系方式
通讯地址:福建省福州市福州地区大学新区学园路2号 邮编:350116
电子邮箱:zhangcy@fzu.edu.cn
电 话:13328278835
教育工作经历
2017/07-至今,福州大学,数学与计算机科学学院,副教授
2016/06-2017/06,澳门大学,科技学院,博士后
2015/11-2017/06,福州大学,数学与计算机科学学院,“旗山学者”
2012/09-2015/08,澳门大学,科技学院,博士
2010/09-2012/07,澳门大学,科技学院,硕士
2006/09-2010/06,北京师范大学珠海分校,数学与应用数学学院,学士
研究领域(研究课题)
1)机器学习
2)计算机视觉
3)网络计算
主要科研项目(近五年)
1)国家自然科学基金委员会,青年项目,基于深度学习的高维时间序列预测方法及其视频控制的应用,2016年至2019年,已结题,主持
2)福建省自然科学基金委员会,面上项目,基于粒子计算的深度学习模型研究,2016年至2020年,已结题,主持
3)福州大学,“旗山”学者(海外)科研项目,受限玻尔兹曼机的分布式学习方法研究,2017 至 2020,已结题,主持
4)国家自然科学基金委员会,面上项目,新型进化计算与深度学习方法及其在疾病预防与控制的应用,2016年至2020年,已结题,参与
5)国家自然科学基金委员会,青年项目,基于多模式人群运动模型的在线多目标跟踪,2017年至2020年,在研,参与
代表性论著
1. 期刊论文(SCI收录):
1)Chun-Yang Zhang, Yongyi Xiao, Jin-Cheng Lin, C. L. Philip Chen, Wenxi Liu and Yuhong Tong, “3D Deconvolutional Networks for the Unsupervised Representation Learning of Human Motions”, IEEE Transactions on Cybernetics, accepted, DOI:10.1109/TCYB.2020.2973300, 2020. (影响因子: 10.387;JCR一区,CCF B类)
2)Chun-Yang Zhang, Junfeng Hu, Lin Yang, C. L. Philip Chen and Zhiliang Yao, “Graph Deconvolutional Networks”, Information Sciences, vol. 518, p. 330-340, May 2020. (影响因子:5.535;JCR 一区,CCF B类)
3)Chun-Yang Zhang, Qi Zhao, C. L. Philip Chen and Wenxi Liu, “Deep Compression of Probabilistic Graphical Networks”, Pattern Recognition, vol. 96, 106979, 2019. (影响因子:5.898,JCR二区,CCF B类)
4)Wenxi Liu, Chun-Yang Zhang, Gengeng Liu, and Yaru Su, “Extraversion Measure for Crowd Trajectories”, IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 6334-6343, 2019. (影响因子: 5.43, JCR一区)
5)Shuang Feng, C. L. Philip Chen and Chun-Yang Zhang, “A Fuzzy Deep Model Based on Fuzzy Restricted Boltzmann Machines for High-dimensional Data Classification”, IEEE Transactions on Fuzzy Systems, accepted, 10.1109/TFUZZ.2019.2902111,2019. (影响因子: 8.415, JCR一区)
6)C. L. Philip Chen and Chun-Yang Zhang, “Data-Intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data,” Information Sciences, Volume 275, pp. 314-347, August 2014. (影响因子: 4.038;引用次数:2258,高被引论文,CCF B类,JCR一区)
7)C. L. Philip Chen, Chun-Yang Zhang*, L. Chen and M. Gan, “Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning,” IEEE Transactions on Fuzzy Systems, vol.23, no.6, pp.2163-2173, Dec. 2015. (影响因子: 8.746;JCR一区,引用次数:103,CCF B类)
8)Chun-Yang Zhang, C. L. Philip Chen, M. Gan and L. Chen, “Predictive Deep Boltzmann Machine for Multi-Period Wind Speed Forecasting,” IEEE Transactions on Sustainable Energy, vol.6, no.4, pp.1416-1425, Oct. 2015. (影响因子: 3.656;JCR一区;引用次数:86)
9)Min Gan, Long Chen, Chun-Yang Zhang*, Hui Ping “A Self-Organizing State Space Type Microstructure Model for Financial Asset Allocation”, IEEE Access, vol.4, pp. 8035 – 8043, 2016. (影响因子: 1.27;JCR Q1,引用次数:3)
10)Chun-Yang Zhang, C. L. Philip Chen and Kin Tek NG, “MapReduce Based Distributed Learning Algorithm for Restricted Boltzmann Machine,” Neurocomputing, vol.198, pp.4-11, 2016. (影响因子: 2.083, 引用次数:18,CCF C类)
11)Chun-Yang Zhang, D.W. Chen, J.T. Yin and L. Chen, “Data-driven Train Operation Models based on Data Mining and Driving Experience for the Diesel-Electric Locomotive,” Advanced Engineering Informatics, vol.30, no.3, pp.553-563, 2016. (影响因子: 2.00, 引用次数:10)
12)Chun-Yang Zhang, D.W. Chen, J.T. Yin and L. Chen, “A Flexible and Robust Train Operation Model Based on Expert Knowledge and Online Adjustment,”International Journal of Wavelets, Multiresolution and Information Processing, vol.15, no.3, 1750023, 2017. (影响因子: 0.67;引用次数:1)
13)Min Gan, C. L. Philip Chen, Long Chen, Chun-Yang Zhang, “Exploiting the Interpretability and Forecasting Ability of the RBF-AR Model for Nonlinear Time Series”. International Journal of Systems Science, vol.47, no.8, pp. 1868-1876, 2016. (影响因子:2.100;JCR 三区,引用次数:16)
2. 会议论文(EI收录):
1)Chun-Yang Zhang and C. L. Philip Chen, “An Automatic Setting for Training Restricted Boltzmann Machine,” IEEE International Conference on Systems, Man, and Cybernetics (SMC2014), San Diego, CA, USA, October 5-8, 2014.
2)Chun-Yang Zhang, Yongyi Xiao, and Jiaqi Pu, “A Multifunctional and Robust Learning Approach for Human Motion Modelling”, IEEE International Conference on Information, Cybernetics, and Computational Social Systems, 2019.
指导硕、博士生研究方向
1)机器学习(基础应用研究:数据表示学习)
2)计算机视觉(工程研究:图片和视频内容理解方法)
3)网络计算(基础应用研究:结点分类、连接预测和社群发现等)